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Summary 

An improved analytical procedure, which uses a fast Fourier transform 
(FFT) algorithm, has been developed to deconvolute luminescence decay 
curves. Using this procedure, the non-exponential fluorescence decay curves 
recorded from the excited singlet state of magnesium tetraphenylporphyrin 
in the presence of CBr4 in frozen solution, in which both radiative transfer 
and electron transfer quench the excited state, have been examined. This 
procedure eliminates the common “overlap effect” that is inherent in 
previous uses of FFT methods when applied to the problem of decon- 
voluting decay curves, through a systematic reconstruction of the input 
data. The analysis may be performed either in the time domain or in the 
frequency domain. An interactive program, DECAYFIT, written in Fortran 
77 was used to carry out the calculations on the IBM 59001 laboratory 
microcomputer. The program can be employed to deconvolute both model 
test data and real data, with a time for the analysis in the range of minutes. 

1. Introduction 

Luminescence decay data are used extensively in investigations of 
the photophysical properties of atomic and molecular systems [ 11. The 
observed timedependent emission from a sample excited by a pulse of 
energy input from a flash lamp results from the convolution of the excited 
state radiative decay function with the exciting lamp intensity function 
[ 2, 31. The technique of time-correlated single-photon counting [l] is 
one of the most precise techniques available for providing numerical data 
that describe both the lamp function and the response function. The prob- 
lem in the analysis, then, is to recover the decay function by deconvoluting 
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the observed decay curves. The form of the decay function that best fits 
the observed luminescence decay gives a means of characterizing the photo- 
physical system. The analysis of decay curves provides rate constant data 
for both radiative and non-radiative processes. Systems in which these 
latter routes are active can be difficult to solve, because the form of the 
decay law may be nonexponential. 

In a number of papers, several methods of deconvoluting luminescence 
decay curves have been compared, including methods using the fast Fourier 
transform (FFT) algorithm [ 4 - 61. The most popular methods of computer 
analysis are based on a variant of the technique of iterative convolution 
(IT), as, for example, the method that takes advantage of the recurrence 
formula of Grinvald and Steinberg [ 71. Such an iterative convolution tech- 
nique allows for simple one-, two- or three-exponential decay components 
in the decay law equation. The use of the FFT technique in the analysis of 
luminescence data has been characterized as giving less reliable results than 
other methods [4,6]. The major problem in the application of the FFT 
algorithm arises from an “overlap effect” which is inherent in the convolu- 
tion of two periodic functions. This effect tends to distort the synthetic 
curve and results in parameters which are incorrect. It is probable that 
such a solution could have arisen from the neglect of a proper treatment 
of the data before applying the FFT algorithm. 

We describe in this paper details of a procedure which successfully 
uses the fast Fourier transform technique to deconvolute luminescence de- 
cay data. This new procedure overcomes the problem of the overlap effect 
by reconstructing the input data. The application program, DECAYFIT, 
was set up for use with a laboratory microcomputer and the deconvolution 
analysis is demonstrated for both model test data and for luminescence 
decay curves, obtained in single-photon counting experiments for magnesium 
tetraphenylporphyrin (MgTPP), where electron transfer severely affects 
the luminescence decay kinetics. 

2. Experimental details 

MgTPP was synthesized according to published procedures [8]. 2-Butyl 
chloride (BuCl) (BDH) was freshly distilled under nitrogen. CBr4 (Kodak) 
was purified by recrystallization. The porphyrin was dissolved in BuCl to 
which CBr4 was added. The sample solution was transferred to a quartz 
cylindrical tube (outside diameter, 8 mm) and quickly plunged into liquid 
nitrogen in order to obtain a glassy sample. 

The low temperature fluorescence decay data were obtained with a 
Photochemical Research Associates Model 3000 nanosecond lifetime flu- 
orometer, based on the technique of timecorrelated single-photon counting 
191. A pulsed hydrogen arc lamp operated at about 30 kHz was used as 
the excitation source. 
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Model data sets were prepared by convoluting a simulated “long-tail 
lamp” function 

e(t) = At* exp(- Bt) 

with a two-exponential decay function 

h(t)=o,exp(- i)+aJexP(- 6) 

for various values of A, B and ci. Random errors were added from a gaussian 
distribution. 

3. Computational aspects 

The observed response function f which describes the luminescence 
decay curve can be written in terms of the convolution integral of the 
lamp function e and the decay function h. For the discrete values of these 
functions the integral assumes the following form: 

N-l 

(1) 

and gives intensity values for f(k) in each channel k of the period N [lo]. 
Analytical procedures based on Fourier transforms provide a natural math- 
ematical foundation for the solution of such complicated curves since the 
convolution in the Fourier space is the simple product 

F(n) = E(n)H(n) (2) 

where F(n), E(n) and H(n) are the Fourier transforms of f(k), e(k) and 
h(k) respectively. 

The aim in our analysis is to determine the decay function k(k) when 
the lamp function e(k) and the observed response function f(k) are known, 
i.e. we have to deconvolute the response function f(k). The analytic pro- 
cedure described here is based on the application of the standard FFT 
algorithm [ll]. The Fourier transforms can be defined, as usual, by 

E(n) = N ’ Igle(k) exp(- T) (n = 0, . . ..N- 1) (3) 

and analogously for H(n). The calculation of the inverse discrete transform 
of F(n) gives the convoluted response function f(k): 

N-l 

f(k)= C F(n) exp (k=O,...,N-1) 
?I==0 

(4) 
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However, in the use of the standard FFT algorithm for the convolution of 
two overlapping periodic functions, incorrect values of the response func- 
tion f(k) are obtained if the period is not properly chosen [lo]. In order 
to eliminate such a result, which is known as the overlap effect, the input 
data should be restructured in the following manner. The period for the 
data should be chosen according to the relationship 

N>2K-1 (5) 

where K represents the number of data points for the two functions to be 
convoluted. This condition requires the following modifications to the 
data before application of the Fourier transform: 

e(k) = e(k) for k = 0 to K - 1 (6a) 
but 
e(k) = 0 for k = K to 2K - 1 (6b) 

7:) = h(k) for k = 0 to K - 1 (7a) 
but 
h(k) = 0 for k = K to 2K - 1 (7b) 

This seemingly simple operation fills K + 1 to 2K channels with zeros, which 
gives a greater number of data points than the actual number K of experi- 
mental data. Convolution of these modified data sets, which includes the 
extra data points, results in the correct values of the calculated response 
function f(k) in the whole 0 to 2K - 1 region. 

The next step is to carry out an iterative least-squares fitting calcula- 
tion. There are two main routes to implement the least-squares fitting 
procedure for the determination of the decay function h(k). The least- 
squares fit can be performed either in the time domain or in the frequency 
domain (Fourier space). 

3.1. Fitting in the time domain using the FFT technique 
In this procedure, the sum of squares of the errors between the ob- 

served, f,,(k), and fitted, f,(k, ai), response functions is minimized iteratively 
by changing the parameters ai in the predicted function, h,(k, al), where 
h,(k, ai) is usually a series of exponential decay functions but can also be 
a complicated function of nonexponential form. This may be written as 
the minimization of 

LSQ(ad = 2 wIf,(k, ad3 If,(k) - fdk, adI* 
k=iV, 

(8) 

where the weighting factor w{f,(k, at)) is equal to 1/a2{fe(k. ai)). IV1 and 
NZ denote the lower and upper bounds of the data (the channel number in 
the experimental set-up, typically between 1 and 256). In the single-photon- 
counting experiment, for which a Poisson distribution of errors is applica- 
ble, ~“tfdk ai)) = fdk ad. 
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It should be noted that the application of either the FFT or the con- 
ventional direct iterative convolution in minimizing eqn. (8) is expected 
to be rather time consuming, since the function f,(k, LQ) has to be calculated 
many times. This entails convoluting the excitation function with the 
new intensities generated by the predicted decay function h(k, ai) for each 
iteration. However, the use of a suitable FFT algorithm to compute the 
discrete convolution can be faster than the use of the direct iterative cal- 
culations. It can be shown that evaluation of N data points in the convolu- 
tion by means. of eqn. (1) requires a computation time proportional to N2 
multiplications. The computation time of the conventional radix-2 algorithm 
[ 101 is proportional to N log,N, and thus the FFT will be faster when 
convolutions are required for data sets with large numbers of points. 

3.2. Fitting in the Fourier space 
A least-squares fitting procedure in the Fourier space has been proposed 

by Wild and coworkers 12,121. The fitting procedure is reduced to the 
minimization of 

+ nNgo wW{H,. An, ai) - 6. dnN2 (9) 

where H,,R CR ai), H+r(n, ai) and HO, R (n), HOJn) are the real (R) and 
imaginary (I) parts of the Fourier transform coefficients of the observed 
(H,,) and fitted (H,) decay functions respectively. The values of the Fourier 
coefficients for the observed decay function are calculated as 

F(n) 
H(n) = - 

E(n) 

The terms wR(n) and wr(n) in eqn. (9) are the weights of the Fourier coef- 
ficients that have been derived by Wild’s group [ 121 to be 

wRtn) = -$ &x(n) 

= ~2~2(~n(n)) + 2UU COV{F,(n), Fl(n)) + u2a2{Fl(n)} 

w(n) = -$ H,(n) 

= u2a2{F,(n)) + 2uv cov{F,(n), F,(n)} + v202(FR(n)] 

(11) 

with 

ER(Q) 
u= 

ERW2 + JW02 
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E,(n) 
V= 

2Aw{F&2)} = &JO) + F,(Zn) 

2Aw{F&)j = FR(O) - F,(2n) 

m covU%w, JwO1= J71(2n) 

In eqns, (9) and (ll), NC is the number of FT coefficients used in the cal- 
culations, and the subscripts R and I denote the real part and the imaginary 
part of the Fourier coefficients respectively. The number NC can be set to 
a low value since all the significant information resides in the first several 
(low frequency) Fourier coefficients. It is seen from eqn. (11) that the 

k-0. . ..K-1 

FFT 

I 1 k-K. . ..2K-i 1 I 
I m I 

I FFT I FFT- 1 I FFT 
v _ I v 

Ho 0-b) -F WI? /E Vi) F In) -He (n. al E In1 H, Cn. a) 

n-0. . ..2K-1 n-o. . . . 2K-3 n-0. . . . 2K--i 

& 4 

l-l, Cn) He (nl 

n-0. . . . NC : n-0. . . . NC 
c 
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Fig. 1. Block diagram of the FFT deconvolution procedure in the Fourier space. FFT 
and FFT’ denote forward and inverse fast Fourier transforms respectively. 
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weights of the Fourier coefficients are completely determined by the Fourier 
coefficients themselves. The Fourier transformation of response function 
f(k), which is necessary for calculation of the Fourier coefficients w(n) 
as in eqn. (lo), is carried out according to the scheme shown in Fig. 1. 
Briefly, these values are calculated by the convolution of the lamp profile 
with data from the predicted decay function. 

3.3. Details of the program 
The program implementing both analytical routes, DECAYFIT, was 

written in Fortran 77 for the IBM 59001, a 16/32 bit laboratory micro- 
computer, which was interfaced with a Hewlett-Packard HP7550A plotter. 
The non-linear least-squares minimizing procedure developed by Marquardt 
[13,14] was used. The conventional Sande-Tukey FFT algorithm [ll] 
was employed. The execution of the FFT algorithm for 512 data points 
takes about 6 s on the IBM S9001 computer. The fit to real data usually 
requires only a small number of iterations (three or four) when good guesses 
of the initial values of parameters have been used, and the calculation is 
completed within minutes. 

4. Analysis of test data 

In our analysis, the 
or model) decay data and 
of statistical quantities. 

differences between the experimental (observed 
the fitted curve can be inspected using a number 

As a numerical test, the reduced chi-square statistics, x,,*, can be 
calculated as 

XV * = (K -p)_1 ig2i* (12) 

where the Ri are the “weighted” residuals defined by 

R 
i 

= f,(i) - fdi. 4 

df&, aj 11 

where a{f,(i, a,.)} = {f,(i, aj))1’2 as in eqn. (8), and p is the number of param- 
eters (a,+). The randomness of the residuals Ri can also be inspected by 
plotting the residuals on the screen_ 

Figures 2 and 3 show the deconvolution analysis results for the noise- 
less and noisy model decay curves respectively, which were obtained by 
convolution of the lamp function with a two-exponential decay function. 
A highly accurate recovery of the input parameters for the decay function 
is seen for the noiseless decay curve, with the residual values of the order 
of the round-off error of the computer (Fig. 2). The fit to the noisy profile 
(Fig. 3), which included added gaussian-type noise, gives a random distribu- 
tion of the residuals, with xv2 = 1, as expected for this type of distribution 
of errors. 
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Fig. 2. Deconvolution of the normalized simulated response function (noiseless). The 
response function was obtained by a convolution of a double-exponential decay func- 
tion (al = 0.5. 71 = 1.0 ns, 02 = 0.5 and 72 = 10.0 ns) with the lamp intensity function 
(e(t) = 29S562t2 exp(- 2-M)) (fitting in the Fourier space). 

Table 1 shows the results of the deconvolution of several sets of model 
data for both noiseless and noisy decay curves. The performance charac- 
teristics of two FFT deconvolution approaches as indicated by the values 
of either the root-mean-square error (RMS) or xv2 are similar, with the fit- 
ting in the time domain being slightly more accurate. These characteristics 
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Fig. 3. Deconvolution of the normalized simulated response function with added noise 
of the gaussian type. The response function was obtained by a convolution of a double- 
exponential decay function (01 = 0.5, ~1 = 1.0 ns, a2 = 0.5 and 72 = 10.0 ns) with the lamp 
intensity function (e(t) = 295562@ exp(- 2.5t)) (fitting in the Fourier space). 

are comparable with those obtained by the iterative convolution meth- 
od [6]. 

Figure 4 shows the weighted residuals RI obtained in the deconvolu- 
tion analysis of the same decay profile, either noiseless (plots (a), (b), (c) 
and (d)) or with noise added (plots (e), (f), (g) and (h)), under various 
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TABLE 1 

Performance characteristics of typical runs of the FFT and iterative procedures for 256 
data point deconvolution programs 

Method of FFT fitting in the time F&T fitting in the Iterative convolutionb 
convoh tion space Fourier space 
(noise level) RM!P Xv= 

RMSa XV2 RMS* XV 2 

Iterative 
(no noise) 

FFT 
(no noise > 

Iterative 
(10000) 

FFT 
(10000) 

Iterative 
(3000) 

FFT 
(3000) 

8.46 x 1O-4 - 2.58 x 1O-3 

3.81 x 10-4 - 2.42 x 1O-3 

5.50 x 101 0.9242 5.88 x 101 

5.82 x lo1 1.0292 5.51 x 101 

3.24 x lo1 0.9857 3.10 x 10’ 

3.07 x 101 0.9538 3.25 x 10’ 

- 7.37 x 10-4 - 

- 

0.9959 5.59 x 10’ 0.9798 

0.9903 

0.9655 3.11 x 101 0.9648 

0.9830 

The test decay profile was obtained by convolution of the decay function 

At) = al exp(- t/71) + (1 - al) exp(- t/72) 

with al = 0.5, ~1 = 10 ns and 72 = 100 ns, with a long-tail lamp function e(t) = at2 exp(- 
bt), and with a = 2955.62 ns-= and b = 0.25 ns-r . The convoluted response function was 
normalized to a 10 000 maximum for the noiseless data. The noisy data were obtained 
by adding random gaussian noise to the response function profile which had been nor- 
malized to the maximum indicated level. The gaussian noise was calculated for the nor- 
malized function. 

aRMsZ[ ,z ~O~--f~~~~-]” 

bUsing a published iterative deconvolution program [ 61 based on a recurrence formula of 
Grinvald and Steinberg [ 7 1. 

conditions. A comparison of the residuals indicates that the correct decon- 
volution results are only obtained when the rules of the scheme in Fig. 1 
are closely followed, as in plots (a) and (e) of Fig. 4. 

Thus it is shown here that serious systematic error is introduced into 
H’(n) = Ha’(n) + iHI’( where H’(n) = F’(n)/E’(n), when F’(n) and E’(n) 
are calculated by a straightforward FFT of the raw data obtained directly 
from the decay profile and the lamp profile respectively (Figs. 4(d) and 
4(h)). The same error problem is inherent in the calculation using the FFT 
technique whatever instrumental method is used. For example, the instru- 
mental method used by Wild et al. [Z], where the multiperiodic super- 
position of the lamp and decay profiles was obtained, will suffer to the 
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Fig. 4. Weighted residuals Ri obtained in the deconvolution calculations for either noise- 
less (plots (a), (b), (c) and (a))_ or noisy (plots (e), (f), (g) and (h)) profiles. The decay 
profile was obtained by a convolution of the lamp profile (e(t) = 296562$ exp(- 2.5t)) 
with the exponential decay function (Ir(t) = exp(- t/i)), with 7 = 5.0 na in (a), (b), (e) 
and (f) and T = 10.0 ns in (c), (d), (g) and (h). Deconvolution procedure in (a) and (e) 
follows the scheme in Fig. 1 with a 512 point FFT. The procedure in {b), (c), (f) and (g) 
assumes zero values for the decay profile in the extended region (267.- 512 channels}. 
The procedure in (d) and (h) is based on the 266 point FFT of the raw data. The param- 
eters recovered are r = 5.000 00 ns in (a) and r = 5.063 72 with XV2 = 1.020 35 in (e). 



same extent as the technique of single-photon counting, where the data 
are collected in one period [ 151. The truncation of the Fourier coefficient 
at frequency NC in the evaluation of eqn. (9) is equivalent to a confinement 
to a low frequency window (0 - NC). However, a low value of NC decreases 
the time of computing. As can be seen from Table 2, the precision of fitting 
is not affected over a wide range of values for NC, and values of NC as low 
as IO - 30 can be applied. 

TABLE 2 

Test of the FFT fitting in the Fourier space: effect of the number NC of Fourier coeffi- 
cients on the root-mean-square error RMS 

NC Noiseless data 

LSQ RMS 

Noisy data 

LSQ RMS XV2 

4.923 x lo-lo 2.244 x 1O-3 9.852 x 10-J 4.563 x10' 1.0434 
10 - - 3.901 x 10-2 4.506 x10' 1.0022 
20 - - 4.126 x10-l 4.522 x10' 0.9870 
30 1.292 x10-9 2.265 x 1O-3 7.255 x10-l 3.908 x 10' 0.9246 
50 4.296 x~O-~ 2.105 x 1O-3 1.288 x101 4.253 x10' 0.9687 

100 2.055 x10-' 2.244 x 1O-3 1.446 x103 4.455 x10' 1.0466 
150 5.686 x10+ 1.995 x 10-3 2.083 x104 4.971 x10' 1.3527 
200 6.898 x~O-~ 2.244 ~10~~ 2.437 x10' 6.529 x 10' 1.9735 
256 9.988 x1O-3 5.233 X 1O-3 2.119 x 106 1.123 x IO2 6.1971 

Model data were prepared as in Table 1. The decay function had a = 1.0 and 7 = 30 118. 
Gaussian noise was calculated for a maximum counting level of 10 000. Other conditions 
were as in Table 1. 

5. Analysis of decay curves that involve non-exponential decay functions 

In most cases of luminescence decay, an exponential model that relates 
the decay to a simple radiative process is appropriate, i.e. the decay func- 
tion is simply related to the lifetime of the excited’state by the equation 
h(t) = exp(- t/r) [ 11. In some cases, however, especially when high pre- 
cision is used in the analysis, it is found that there is significant non- 
exponentiality in the luminescence decay curve. There are a number of 
physical reasons to account for such behaviour [ 16 - IS]. In order to de- 
convolute this type of non-exponential decay curve, a decay law comprising 
a sum of exponentials is frequently used [ 11. A third situation arises in 
other processes, for example time-dependent diffusion-controlled fluores- 
cence quenching in solution [ 161 and donor-acceptor distance-dependent 
energy transfer in the solid state [17,18], where the observed, non-expo- 
nential decay curves cannot be described by even a sum of a series of ex- 
ponentials. Such is the case when electron transfer reactions compete for 
natural decay processes [19]. Our studies on the luminescence of porphyrins 
in rigid matrices containing an electron acceptor have shown 120, 211 that 
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curve. We attribute this deviation to an 
singlet state of the porphyrin to the 
according to the reaction 

MgTPP* + CBr4 - MgTPP+. + CBr,- 

electron transfer from the excited 
CBr4 acceptor molecule [ZO, 211 

(13) 

The addition of an electron transfer pathway for quenching the excited 
state in a system in which electron donors and acceptors are randomly 
distributed in an inert matrix changes the time dependence of the emission 
intensity h(t) to [ 18,191 

h(t) = A exp (14) 

In eqn. (14), A is a constant, r. is the fluorescence lifetime in the absence 
of the acceptor, C is the acceptor concentration and a is defined by the 
dependence of the electron transfer rate constant k(R) on distance R as 
k(R) = Y exp(- R/a) (here c) is the electron transfer rate constant for donor- 
acceptor pairs in contact). The function g(t) in eqn. (14) is well approxi- 
mated for vt > 10 by [lS] 

g(t) = (In vf)3 + 1.732(ln vt)* + 5.934(1n vt) f 5.445 (15) 

We have found the FFT method described in this paper to be very useful 
in analysis of such complicated decay functions. The values of a and v were 
obtained by fitting this theoretical decay law equation to the experiment& 
data. The magnitudes of the parameters of eqn. (14), as obtained from the 
fit in Fig. 5 (a = 0.81 a, v = 1.2 X 1013 s-l) are reasonable when the effects 
of the distance dependence of the electron transfer rate are considered theo- 
retically. For example, the value of a is close to the average value of 0.83 a 
determined by Miller et al. 1221 for the reaction of radical anions of aro- 
matic hydrocarbons with organic molecules. Measurements of fluorescence 
quenching by others have yielded a = 0.7 a [ 231 and a = 0.57 a [24], for 
two different electron donors, the ruthenium phenanthroline complex and 
indole respectively. 

6. Conclusions 

New procedures employing FFT in the deconvolution of luminescence 
decay curves have been described. These procedures avoid the common 
error which can arise from the overlap effect in convolution of two over- 
lapping periodic functions with the use of the discrete Fourier transform. 
A Fortran program DECAYFIT written for the IBM $9001 microcomputer 
allows for fitting, in a matter of minutes, of an arbitrarily chosen decay 
function to model or real luminescence decay data. The analysis may be 
performed in either the time domain or the frequency domain. The fitting 
in the time domain is slightly more accurate, but it is a slower procedure. 
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The Fourier transform method presented here is as accurate as the iterative 
convolution method and does not suffer its limitation to only one type of 
decay law equation. 

Two general notes on the application of FFT to deconvolution seem 
to be appropriate. Firstly, the efficiency of the convolution calculation 
can be increased by application of the FFT procedures which allow for 
the transform of 2ZV samples by an N-sample transform [lo]. Secondly, the 
improvements in the accuracy of the calculation of the discrete Fourier 
coefficients, as those reported recently [25], have a negligible effect on 
the results. 
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